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ABSTRACT
A marginalized particle filter (MPF) is designed for attitude

estimation problem. Unit quaternions are used to parameterize
rotations. The linear structure in the gyroscope bias dynamics
enables us to completely decouple its evolution from quaternion
particles. We further show that the linear part of the proposed
MPF reaches a steady state, similar to what Kalman filter does
for controllable and observable linear stochastic systems. Al-
though the steady-state MPF is similar to the particle filter in
structure, it has two advantages: (i) the theoretical superiority
of marginalizing linear substructure, and (ii) the reduction in to-
tal computational time. Numerical simulations are performed to
demonstrated the performance of the proposed filter.

1 INTRODUCTION
Attitude estimation can be traced back to 1965 when Wahba

posed the question to estimate the attitude of a spacecraft in the
sense of least squares given noisy observations [1], resolved
in both of the body frame and the reference frame. Some
well-known estimators that robustly solve Wahba’s problem
are Davenport’s q method [2], and the QUaternion ESTimator
(QUEST) [3].

For attitude estimation with increased accuracy, strap-down
gyroscopes are used in combination with vector measurements.
Because of the nonlinear nature of the attitude kinematic
equation and measurement model, the problem is a nonlinear
state estimation problem, which is typically tackled by Bayesian
inference. The extended Kalman filter (EKF) was first studied
in attitude estimation and in particular, Lefferts et. al. proposed
a multiplicative error approach in which the error quaternion
and the gyroscope bias are defined as the filter states [4, 5]. The

drawback of EKF is that the mean and covariance of the state
is propagated analytically through the first-order linearization
of the nonlinear dynamics, which may introduce large approx-
imation errors and lead to sub-optimal filter performance. The
unscented Kalman filter (UKF) is superior to EKF in terms of
capturing the posterior mean and covariance of the state distribu-
tion (accurately up to the 3rd order) [6]. The UKF formulation
for attitude estimation has been proposed by Crassidis et. al. [7].

Due to recent development in computational power, the
use of particle filters (PF) gained much traction and became
practical for a broad area of applications. PF computes the
posterior state distribution by drawing random samples of the
state vector (termed as particles) and evaluates the likelihood
of getting the actual system measurements conditioned on each
particle [8]. Cheng et. al. applied a bootstrap particle filter for
sequential spacecraft attitude estimation [9]. Because of the high
dimensionality of the state vector, a prohibitively large number
of particles are needed to span the state space to support the
state distribution. In contrast to this approach, Oshman et. al.
reduces the computational burden by sampling only the attitude
of the spacecraft and using a genetic algorithm to estimate the
gyro bias [10].

If there exists a linear sub-structure inherent in the nonlin-
ear dynamics, it is possible to marginalize out the linear state
variables and estimate them instead with the Kalman filter
(KF) while the nonlinear state variables are estimated using
the PF. This powerful combination of PF and KF, called the
marginalized particle filter (MPF) or the Rao-Blackwellized
particle filter, can effectively increase the estimation accuracy
and possibly reduce the computations [11]. The scheme has
been directly applied for attitude estimation by Liu et. al. [12].



In this work, we further exploit the underlying linear-
substructure and show that the linear state evolution is
completely independent of the nonlinear part. The organiza-
tion of the paper is as follows. In Sec.2, recursive Bayesian
filtering and sequential-importance-resampling particle filter are
reviewed. In Sec.2.2, the general marginalized particle filter
is reviewed. In Sec.3, the quaternion kinematics along with
the gyroscope and vector measurement models are presented.
Then the marginalized particle filter formulation for attitude
estimation is proposed. In Sec.4 an algorithmic comparison
is performed for the proposed filter with the PF. In Sec.5, a
numerical study is performed to show superior performance of
MPF over PF and EKF.

2 BAYESIAN FILTERING
In this section, the sequential-importance-resampling (SIR)

particle filter and the marginalized particle filter are reviewed. A
general discrete-time nonlinear model is given by

xt+1 = Ft(xt ,ut ,wt)

yt = Ht(xt ,et)
(1)

where xt represents the system state at time t, ut and yt are
the input and output, respectively, wt ,et are the zero-mean
process and measurement noises with mutually independent
distributions. The Markov assumption is made that past and
future data are independent if one knows the current state
xt . The corresponding Baye’s net representation is shown in
Figure 1. The Bayesian filtering problem is to compute the
a-posteriori distribution P(xt |Yt), where Yt = {yk}t

k=0 is the set
of measurements up to and the current time, t

Table 1 depicts the basic Bayes filter. It possesses two
essential steps:

Update: compute the a-posteriori distribution of the filter
state by incorporating the most recent measurement
Propagation: predict the a-priori distribution of the filter
state using the process model and the current state distri-
bution

The basic Bayes filter can only be implemented under the fol-
lowing two circumstances, either the state of interest is restricted
in a finite state space, or the system process and measurement
models are linear and the noises are zero-mean Gaussian
distributed. The former can be done by the discrete Bayes filter
in which the propagation requires a finite sum instead of the
integration. The latter is dealt with by the well-known Kalman
filter algorithm which carries out the integral in closed form.

Initialization initialize P(x0),

Measurement measure yt ,

Update P(xt |Yt) = ηP(yt |xt)P(xt |Yt−1),

Propagation P(xt+1|Yt) =
∫

P(xt+1|xt ,ut)P(xt |Yt)dxt ,

Table 1. The basic Bayes filter algorithm. η is a normalization factor.

Figure 1. The Bayes’ net representation of the underlying markov as-
sumption

2.1 Particle filter
In contrast, particle filters can deal with circumstances other

than the two aforementioned. The idea, based on Monte Carlo
methods, uses a large number of particles {x(i)t }N

i=1 to approxi-
mate the state distribution P(xt). In our work, x(i)t represents the
i-th particle, out of N, at time t. It is also related to sequential
importance sampling, the simplest form of which requires the
particles be drawn from the a-priori distribution P(xt |Yt−1), de-
noted as {x(i)t|t−1}

N
i=1 i.e. the set of N particles at time t, given

measurements made up to the t − 1 time step. After obtaining
the most recent measurement yt , we can evaluate the importance
weights,

w(i)
t ∝ P(yt |x(i)t|t−1)

w(i)
t ← w(i)

t /
N

∑
i=1

w(i)
t

(2)

That is, the importance weight is proportional to (denoted by ∝)
the likelihood of getting the measurement for a given instantia-
tion of the state i.e. a particle, and the sum of weights is normal-
ized to 1. The Monte Carlo estimate of the a-posteriori distribu-
tion is then

P(xt |Yt) =
N

∑
i=1

w(i)
t δ (xt − x(i)t|t−1) (3)

where δ (•) denotes the Dirac delta. Usually, a resampling step is
performed to refocus the particle set to regions in state space with



Initialization
initialize the particles,

x(i)0|−1 ∼ P(x0), ∀i = 1, . . . ,N

Measurement measure yt

Update

assign weights w(i) to each particle,

w(i)
t ∝ P(yt |x(i)t|t−1)w

(i)
t−1

and ∑
N
i=1 w(i)

t = 1

A-posteriori estimate x̂t|t = ∑
N
i=1 w(i)

t x(i)t|t−1

Resampling
if 1/∑

N
i=1 w(i)

t
2
< Nthreshold ,

resample N particles so that,

Pr(x(i)t|t = x( j)
t|t−1) = w( j)

t

reweight w(i)
t = 1/N

Propagation
sample x(i)t+1|t ,

x(i)t+1|t ∼ P(xt+1|x(i)t|t ,ut)

Table 2. The sequential importance resampling particle filter algorithm.
The symbol ∼ denotes drawing a random sample from the target distri-
bution.

high a-posteriori probability. A detailed derivation of particle
filter can be found in [13]. An algorithmic form of the sequential
importance resampling particle filter is summarized in Table 2.

2.2 Marginalized particle filter
The main idea behind the marginalized particle filter is to

take advantage of the linear sub-structure in the filter dynamics,
and marginalize out the corresponding linear state variables and
estimate them using the Kalman filter [14]. If we partition the
state variables as,

xt =

[
xn

t
xl

t

]
(4)

where xn
t and xl

t are the nonlinear and linear parts of the state.
The process and measurement models are given by,

xn
t+1 = f n

t (x
n
t )+An

t (x
n
t )x

l
t +Gn

t (x
n
t )w

n
t

xl
t+1 = f l

t (x
n
t )+Al

t(x
n
t )x

l
t +Gl

t(x
n
t )w

l
t

yt = ht(xn
t )+Ct(xn

t )x
l
t + et

(5)

Compared with the general model (Eqn. (1)), here we assume
that the linear state variables and the noises appear affinely in
the filter model.

If we rewrite the a-posteriori distribution using the chain
rule, we get

P(xt |Yt) = P(xn
t ,x

l
t |Yt) = P(xl

t |xn
t ,Yt)P(xn

t |Yt) (6)

We still use the SIR particle filter to approximate P(xn
t |Yt). How-

ever, if P(xl
0) is Gaussian distributed, P(xl

t |xn
t ,Yt) can be com-

puted recursively by the Kalman filter. For each pair of instanti-
ations {xn,(i)

t ,xn,(i)
t+1 }, Eqn. (5) becomes a linear system with two

measurements z1
t and z2

t ,

xl
t+1 = f l

t +Al
tx

l
t +Gl

tw
l
t

yt −ht︸ ︷︷ ︸
z1
t

=Ctxl
t + et

xn
t+1− f n

t︸ ︷︷ ︸
z2
t

= An
t xl

t +Gn
t wn

t

(7)

Therefore, in the marginalized particle filter, we keep track of a
set of N particles representing the nonlinear partition of the state
{xn,(i)

t }, and N Kalman filters {xl,(i)
t ,P(i)

t }, where xl,(i)
t ,P(i)

t are
the mean and the covariance of the i-th Kalman filter. If the same
number of particle are used in the standard particle filter and the
marginalized particle filter, the latter will theoretically provide
better estimates because P(xn

t |Yt) lives in a smaller dimension
than P(xt |Yt).

The marginalized particle filter algorithm is summarized in
Table 3.

3 MARGINALIZED PARTICLE FILTER FOR ATTITUDE
ESTIMATION
Several rotation parameterizations have been studied, such

as Euler angles, unit quaternions, Rodrigues parameters, modi-
fied Rodrigues parameters [15]. In this work, we use unit quater-
nions as they provide a globally non-singular way to represent
rotations. Furthermore, we will show shortly that this parameter-
ization will significantly simplify the MPF formulation.

3.1 Quaternion kinematics
The unit quaternion is used to describe the spacecraft atti-

tude,

q =

[
ρ

q4

]
=

[
êsin(θ/2)
cos(θ/2)

]
(8)



Initialization

initialize the particles (nonlinear state),

xn,(i)
0|−1 ∼ P(xn

0), ∀i = 1, . . . ,N

initialize the means and covariances

of the linear state

{xl,(i)
0|−1,P

(i)
0|−1}= {x̄

l
0, P̄0}

Measurement measure yt

PF Update

assign weights w(i) to each particle,

w(i)
t ∝ P(yt |xn,(i)

t|t−1,x
l,(i)
t|t−1)w

(i)
t−1

and ∑
N
i=1 w(i)

t = 1

KF Update for z1
t

ht = ht(x
n,(i)
t|t−1),Ct =Ct(x

n,(i)
t|t−1)

Mt =CtP
(i)
t|t−1CT

t +Rt

Kt = P(i)
t|t−1CT

t M−1
t

xl,(i)
t|t = xl,(i)

t|t−1 +Kt(yt −ht −Ctx
l,(i)
t|t−1)

P(i)
t|t = P(i)

t|t−1−KtMtKT
t

Estimate
x̂n

t|t = ∑
N
i=1 w(i)

t xn,(i)
t|t−1

x̂l
t|t = ∑

N
i=1 w(i)

t xl,(i)
t|t

Resampling
if 1/∑

N
i=1 w(i)

t
2
< Nthreshold ,

resample N nonlinear particles so that,

Pr(x(i)t|t = x( j)
t|t−1) = w( j)

t

reweight w(i)
t = 1/N

PF Propagation
sample xn,(i)

t+1|t ,

xn,(i)
t+1|t ∼ P(xn

t+1|x
n,(i)
t|t ,xl,(i)

t|t )

KF Update for z2
t similar to the procedure for z1

t

KF Propagation
xl,(i)

t+1|t = f l
t +Al

tx
l,(i)
t|t

P(i)
t+1|t = Al

tP
(i)
t|t Al

t
T
+Gl

tQ
l
tG

l
t
T

Table 3. The marginalized particle filter algorithm, where it is assumed
that wl

t is uncorrelated with wn
t .

where ê is a unit vector representing the axis of rotation, θ is
the angle of rotation from the reference frame to the body-fixed
frame. It has to satisfy the following unity norm constraint,

||q||22 = ρ
T

ρ +q2
4 = 1 (9)

because it uses four parameters to describe three degrees of free-
dom. The quaternion kinematics is given to be,

q̇ =
1
2

Ξ(q)ω

Ξ(q) =
[

q4I3×3 +[ρ×]
−ρT

]
=


q4 q3 −q2
−q3 q4 q1
q2 −q1 q4
−q1 −q2 −q3

 (10)

The matrix Ξ(•) obeys the following property,

Ξ
T (q)Ξ(q) = I3×3, ∀q ∈ R4 (11)

The measurement of the strap-down gyroscope is usually mathe-
matically written as,

ω̃ = ω +β +ζ

β̇ = η

E[
[

ζ

η

]
] = 0

E[
[

ζ

η

][
ζ T ηT ]] = [Q1 0

0 Q2

]
= Q

(12)

ζ ,η are the angle random walk (ARW) and the rate random walk
(RRW) respectively. β , ω̃ , and ω are the gyro bias, the measured
angular velocity, and the true angular velocity, respectively. The
vector measurement model is usually written as,

y =


b1
b2
...

bM

=


A(q)r1
A(q)r2

...
A(q)rM

+


ν1
ν2
...

νM



E[


ν1
ν2
...

νM

] = 0, E[


ν1
ν2
...

νM

[νT
1 νT

2 · · · νT
M
]
] = R

(13)

where A(q) converts quaternions to rotation matrices, {ri,bi} is
a pair of vector measurements expressed in the reference frame



and the body frame respectively, M is the number of vector mea-
surements. If we choose the state of the particle filter to be
x = [qT , β T ]T , the discretized filter dynamics can be written as,

qt+1 = qt +
∆t
2

Ξ(qt)ω̃t −
∆t
2

Ξ(qt)βt −
∆t
2

Ξ(qt)ζt

βt+1 = βt +∆t ·ηt

(14)

where a zero-order hold is used, and the second and higher order
terms are neglected in the matrix exponential. Quaternion nor-
malization should be performed at each step. The process and
measurement noise covariances in the discrete-time model are

Q̄ = Q/∆t, R̄ = R/∆t (15)

3.2 MPF formulation
It can be readily seen that the filter dynamics in Eqn. (14),

and the measurement model in Eqn. (13) are in the form of the
marginalized particle filter model (Eqn. (5)). In particular, the
state partition is

xt =

[
xn

t
xl

t

]
=

[
qt
βt

]
(16)

Matching with the formulation in these two equations,

f n
t = qt +

∆t
2

Ξ(qt)ω̃

An
t = Gn

t =−
∆t
2

Ξ(qt)

f l
t = 03×1

Al
t = Gl

t/∆t = I3×3

ht =


A(qt)r1
A(qt)r2

...
A(qt)rM


Ct = 03M×3

(17)

A direct implementation of Table 3 with the definitions of the
matrices above will lead to the MPF formulation for attitude es-
timation. However, there are several important features inherent
in this model, which can be partially seen from the Bayes’ net
depicted in Figure 2. Further exploitation of the underlying lin-
ear structure leads to a significantly simplified MPF formulation.
The modifications are done in the following steps: (1) KF update
for z1

t , (2) PF propagation, (3) KF update for z2
t , (4) KF propaga-

tion. The detailed MPF procedure is presented in the following
subsections:

Figure 2. The Bayes’ net representation of the attitude estimation prob-
lem

3.2.1 PF Update After the most recent vector mea-
surement yt is obtained, the importance weights are calculated
according to,

e(i)t = yt −


A(q(i)t )r1

A(q(i)t )r2
...

A(q(i)t )rM


w(i)

t ∝ exp
{
− 1

2
e(i)t

T
R̄−1e(i)t

}
w(i)

t−1

(18)

where q(i)t is generated from the importance sampling function
which will be discussed shortly. The importance weights should
be normalized after this step.

3.2.2 Estimate The a-posteriori bias estimate β̂t can be
obtained by the weighted average.

β̂t =
N

∑
i=1

w(i)
t β

(i)
t|t (19)

However, because of the unit norm constraint and the sign am-
biguity, the weighted average estimate for quaternions is not
optimal. Following Markley et. al. [16], the optimal aver-
age quaternion is defined as the maximizer of a constrained
quadratic programming (equivalently, a weighted sum of the
squared Frobunius norms of attitude matrix differences). Hence,
the a-posteriori attitude estimate q̂t is,

q̂t = argmax
q

qT Lq

subject to qT q = 1

where L =
N

∑
i=1

w(i)
t q(i)t q(i)t

T

(20)



The maximization problem can be solved analytically. q̂t is an
eigenvector of L corresponding to the maximum eigenvalue.

3.2.3 KF Update for z1
t The measurement yt does not

contain any information about the linear state variable βt . The
corresponding KF update cannot be used and thus left out in the
algorithm.

3.2.4 PF propagation The conditional a-priori distri-
bution of the nonlinear state variables is,

P(qt+1|q(i)t ,Yt) =

N

(
q(i)t +

∆t
2

Ξ(q(i)t )(ω̃t −β
(i)
t|t−1),

∆t2

4
Ξ(q(i)t )(P(i)

t|t + Q̄1)Ξ
T (q(i)t )

)
(21)

where N represents a normal distribution. P(qt+1|q(i)t ,Yt) is ac-
tually the importance sampling function in the MPF. One will
instantiate N particles q(i)t+1 from this distribution. Equivalently,

q(i)t+1 can also be generated by,

q(i)t+1 = q(i)t +
∆t
2

Ξ(q(i)t )(ω̃t −β
(i)
t|t −υ)

υ ∼N (03×1,P
(i)
t|t + Q̄1)

(22)

3.2.5 KF Update for z2
t The second measurement z2

t is
important because it is the only way that information in yt can be
incorporated in the linear state variable. Based on the following
measurement equation

z2
t = q(i)t+1−q(i)t −

∆t
2

Ξ(q(i)t )ω̃t =−
∆t
2

Ξ(q(i)t )βt −
∆t
2

Ξ(q(i)t )υ

(23)
KF update is performed,

β
(i)
t|t = β

(i)
t|t−1 +Kt(z2

t +
∆t
2

Ξ(q(i)t )β
(i)
t|t−1)

P(i)
t|t = P(i)

t|t−1−KtMtKT
t

Mt =
∆t2

4
Ξ(q(i)t )(P(i)

t|t−1 + Q̄1)Ξ
T (q(i)t )

Kt =−
∆t
2

P(i)
t|t−1Ξ

T (q(i)t )M†
t

(24)

where the pseudo-inverse of Mt , denoted as M†
t is used in calcu-

lating the KF gain. Using Eqn. (11), M†
t is found to be,

M†
t =

4
∆t2 Ξ(q(i)t )(P(i)

t|t−1 + Q̄1)
−1

Ξ
T (q(i)t ) (25)

Also, Eqn. (23) simplifies the innovation error of KF,

z2
t +

∆t
2

Ξ(q(i)t )β
(i)
t|t =−∆t

2
Ξ(q(i)t )υ(i) (26)

where υ(i) is the instantiation used to generate q(i)t+1. With those,
the KF update can be simplified to,

Mean update:

β
(i)
t|t = β

(i)
t|t−1 +P(i)

t|t−1(P
(i)
t|t−1 + Q̄1)

−1
υ
(i) (27)

Covariance update:

P(i)
t|t = P(i)

t|t−1−P(i)
t|t−1(P

(i)
t|t−1 + Q̄1)

−1P(i)
t|t−1 (28)

It should be noted that the KF update does not involve q(i)t .

3.2.6 Kalman filter propagation The Kalman filter
propagation equations are given by,

Mean propagation:

β
(i)
t+1|t = β

(i)
t|t (29)

Covariance propagation:

P(i)
t+1|t = P(i)

t|t +∆t2Q̄2 (30)

which imply that the Kalman filter equations (27) through (30)
are independent of the quaternion particles. Furthermore, if each
particle’s bias covariances share the same initialization P̄0 , then
only one, instead of N, Riccati recursions is needed i.e the parti-
cle index of the covariance can be dropped, which can lead to a
substantial reduction in computational complexity.

3.2.7 Steady-state KF for linear state Combining
Eqns. (28) and (30), we obtain the following algebraic Riccati
equation of the a-priori linear state covariance matrix,

P(i)
t+1|t = P(i)

t|t−1 +∆t2Q̄2−P(i)
t|t−1(P

(i)
t|t−1 + Q̄1)

−1P(i)
t|t−1 (31)

Following Kalman filter theory, the steady-state solution P∞ is
guaranteed to exist and be positive definite. Therefore, in the
MPF algorithm, there is no need for covariance propagation.
Moreover, the mean update (Eqn. (27)) uses the steady-state KF
gain K∞ = P∞(P∞ + Q̄1)

−1.



PF Steady-state MPF

Initialization

Initialize particles Initialize quaternion particles q(i)0

q(i)0 ,β
(i)
0 β

(i)
0 = β̄0

Solve the Riccati equation for P∞

Update Sec. 3.2.1 same as PF

Estimate Sec. 3.2.2 same as PF

Resampling same as Table 2 same as PF

Propagation

ω
(i)
t = ω̃t −β

(i)
t −η(i) ω

(i)
t = ω̃t −β

(i)
t −υ(i)

q(i)t+1 = q(i)t + ∆t
2 Ξ(q(i)t )ω

(i)
t q(i)t+1 = q(i)t + ∆t

2 Ξ(q(i)t )ω
(i)
t

β
(i)
t+1 = β

(i)
t+1 +∆tζ (i) β

(i)
t+1 = β

(i)
t+1 +K∞υ(i)

η(i) ∼N (03×1, Q̄2),ζ
(i) ∼N (03×1, Q̄1) υ(i) ∼N (03×1,P∞ + Q̄1)

Table 4. The algorithmic comparison of PF and steady-state MPF for attitude estimation

4 Comparison with PF
In this section, we discuss the differences between the

steady-state MPF and the PF for attitude estimation. An
algorithmic comparison is summarized in Table 4.

In the initialization step, the PF generates particles that represent
the a-priori distribution of the state. However, the steady-state
MPF only generates the quaternion particles, and the bias parti-
cles are set to be the a-priori mean of the bias. As discussed in
Sec. 3.2.7, one needs to solve the algebraic Riccati equation for
P∞. The update, estimate, resampling steps for the two filters are
exactly the same. In the propagation step, the PF instantiates two
random variables η ∼ N (03×1, Q̄2) and ζ ∼ N (03×1, Q̄1) in
the gyroscope measurement model. The MPF only instantiates
one random variable υ ∼ N (03×1,P∞ + Q̄1). Although the
two algorithms are extremely similar, the steady-state MPF is
superior to the PF.

5 Simulation
In this section, we demonstrate the performance of the

proposed steady-state marginalized particle filter in numerical
simulations. We compare the proposed steady-state marginalized
particle filter with the extended Kalman filter (multiplicative
quaternion formulation, Sec. 7.2 in [5]) and the standard particle
filter.

Three vector measurements are generated during the simu-
lation. Their representations in the reference frame are,

r1 =

1
0
0

 , r2 =

0
1
0

 , r3 =

0
0
1

 (32)

The spacecraft starts at q0 = [0, 1/
√

2, 0, 1/
√

2]T and has a con-
stant angular velocity ω = [−.0012, 0, 0]T rad/sec. The initial
bias is β0 = [0, 0, 0]T rad/sec. The noise covariances matrices
are given below,

Q1 = (5×10−4)2·I3×3, Q2 = (2×10−5)2 · I3×3

R = 0.032 · I9×9
(33)

The sampling period of all the sensors is set to 1sec. We evaluate
the proposed filter in the following two cases: (i) zero initial
errors, (ii) large initial errors.

5.1 Zero initial errors
In this case, we assume the initial state distribution as Gaus-

sian, with no initial attitude error and bias error, i.e. q̂0 =
q0, β̂0 = β0. The initial attitude error covariance in terms of the
roll, pitch, yaw error angles is set to,

Λ1 = 3×10−5 · I3×3 (34)
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Figure 3. Case (i): plot of the roll, pitch, yaw error angles. The outer
dashed lines are the 3-σ bounds from EKF

and the initial bias covariance is,

Λ2 = 1×10−12 · I3×3 (35)

Under these parameters, we compare the steady-state MPF, the
PF and the EKF for a sample of 300 particles. The estimate error
angles (roll, pitch, yaw) are plotted in Figure 3. The absolute
error angles, calculated regardless of rotation axes, are plotted
in Figure 4. From this result, we can verify that the steady-state
MPF performs better than the standard PF, but not necessarily be
better than the EKF. The second observation is consistent with
the results reported in [9,12]. The bias estimate errors are plotted
in Figure 5, which shows comparable performance from each
filter.

5.2 Large initial errors
This section demonstrates the global convergence properties

of the proposed filter. When there is no a-priori information of
the initial attitude, the EKF is infeasible. However, particle fil-
ters will still be functional by drawing samples from the uniform
attitude distribution. In the simulation, the same set of initial
quaternion particles is used for a fair comparison. To accommo-
date large uncertainties at the beginning, we follow the heuristics
proposed in [9], which uses a initially large but decaying mea-
surement standard deviation,

R′ = (1+50exp{−0.02t}) ·0.032 · I9×9 (36)

Figure 6 shows the roll, pitch, yaw error angles. Figure 7 shows
that although the absolute error angles converge 0, the two filters
exhibit very different transient behaviors. Figure 8 shows that
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Figure 4. Case (i): plot of the absolute error angles regardless as rota-
tion axes
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Figure 5. Case (i): plot of the bias estimate errors in three directions

the steady-state MPF has a more accurate bias estimate in this
case.

CONCLUSION

This paper derived a steady-state marginalized particle filter
for sequential attitude estimation. Marginalizing out the gyro-
scope bias increases the estimation accuracies. By further ex-
ploiting the linear substructure, we show that the bias evolu-
tion is independent of the quaternion particles, and its covariance
reaches a steady-state value, which will reduce the computation
complexity. Comparison with the standard particle filter and the
extended Kalman filter in numerical simulations validates the su-
perior performance.
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Figure 6. Case (ii): plot of the roll, pitch, yaw error angles
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