Steady-State Marginalized Particle Filter for Attitude Estimation

Yizhou Wang Dennis Wai Prof. Tomizuka

Mechanical Systems Control Laboratory Department of Mechanical Engineering University of California, Berkeley

10/24/14San Antonio, Texas

Outline

- Introduction
- Particle Filter
- Marginalized Particle Filter
- SS Marginalized Particle Filter for Attitude Estimation
 - MPF Formulation
- Results and Conclusion

Introduction		

Introduction

- Attitude estimation is *finding the best guess* to a spacecraft's orientation
- *Particle Filters* recently gained traction as a feasible estimation tool because of advances in computational power
- It also doesn't make any assumptions at all about the states' belief, in contrast to EKF and UKF, which have been traditionally used

PF		

Particle Filter: Big Idea

• Based on Bayes rule, particle filter is a Monte Carlo method to arrive at a best estimate for the state of a system

$$P(x_t|Y_t) = \eta P(y_t|x_t) P(x_t|Y_{t-1})$$
(1)

PF		

Initialize

PF		

Initialize

PF		

Propagate

PF		

Update

PF		

Average

PF		

Resample

PF		

Resample

	MPF	

Marginalized PF: Big Idea

• MPF is a natural extension of PF and takes advantage of the linear substructure hidden in the filter dynamics by marginalizing them and estimating them with a Kalman filter.

$$x_t = \begin{bmatrix} x_t^n \\ x_t^l \end{bmatrix} = \begin{bmatrix} q_t \\ \beta_t \end{bmatrix}$$
(2)

	MPF	

MPF Formulation

• It turns out that the dynamics attitude estimation can fit in the MPF framework!

$$\begin{aligned} x_{t+1}^{n} &= f_{t}^{n}(x_{t}^{n}) + A_{t}^{n}(x_{t}^{n})x_{t}^{l} + G_{t}^{n}(x_{t}^{n})w_{t}^{n} \\ x_{t+1}^{l} &= f_{t}^{l}(x_{t}^{n}) + A_{t}^{l}(x_{t}^{n})x_{t}^{l} + G_{t}^{l}(x_{t}^{n})w_{t}^{l} \\ y_{t} &= h_{t}(x_{t}^{n}) + C_{t}(x_{t}^{n})x_{t}^{l} + e_{t} \end{aligned}$$
(3)

$$q_{t+1} = q_t + \frac{\Delta t}{2} \Xi(q_t) \tilde{\omega}_t - \frac{\Delta t}{2} \Xi(q_t) \beta_t - \frac{\Delta t}{2} \Xi(q_t) \zeta_t$$

$$\beta_{t+1} = \beta_t + \Delta t \cdot \eta_t$$

$$y_i = A(q) r_i + \nu_i$$
(4)

[14] Schon, T., Gustafsson, F., and Nordlund, P.-J., 2005. Marginalized particle filters for mixed linear/nonlinear state-space models. Signal Processing, IEEE Transactions on, 53(7), pp. 22792289. [5] Crassidis, J. L., and Junkins, J. L., 2011. Optimal estimation of dynamic systems. CRC press.

	MPF	

MPF Formulation

• We can match terms and find that:

$$f_t^n = q_t + \frac{\Delta t}{2} \Xi(q_t) \tilde{\omega}$$

$$A_t^n = G_t^n = -\frac{\Delta t}{2} \Xi(q_t)$$

$$A_t^l = G_t^l / \Delta t = I_{3 \times 3}$$

$$h_t = \begin{bmatrix} A(q_t)r_1 \\ A(q_t)r_2 \\ \vdots \\ A(q_t)r_M \end{bmatrix}$$

$$C_t = 0_{3M \times 3} \quad f_t^l = 0_{3 \times 1}$$
(5)

	SS MPF	

SS MPF Formulation

- We can now run the PF on the nonlinear states and the KF on the linear states to get our state estimates
- If each linear particle is subject to the same initial covariance conditions, then the N linear particles can be propagated by one set of KF equations.
- Implication: We would reduce our problem size because each linear particle can be initialized with the same Ricatti equation

	SS MPF	

SS MPF Formulation

• If the right conditions exists, Kalman theory dictates that there exists a steady state covariance P_{∞} , and subsequently, a steady state Kalman gain, K_{∞}

$$P_{\infty} = P_{\infty} + \Delta t^{2} \bar{Q}_{2} - P_{\infty} (P_{\infty} + \bar{Q}_{1})^{-1} P_{\infty}$$

$$K_{\infty} = P_{\infty} (P_{\infty} + \bar{Q}_{1})^{-1}$$
(6)

• Implication: No more propagating each particle's covariance through the MPF and you can solve for the gains offline

	SS MPF	

PF vs SS MPF

	PF	Steady-state MPF
	Initialize particles	Initialize quaternion particles $q_0^{\left(i\right)}$
Initialization	$q_{0}^{(i)},eta_{0}^{(i)}$	$eta_0^{(i)} = areta_0$
		Solve the Riccati equation for P_∞
Update	$w_t^{(i)} \propto P(y_t x_{t t-1}^{(i)}) w_{t-1}^{(i)} \text{ and } \sum_{i=1}^N w_t^{(i)} = 1$	same as PF
Estimate	$\hat{x}_{t t} = \sum_{i=1}^{N} w_t^{(i)} x_{t t-1}^{(i)} \qquad \text{same as PF}$	
Resampling	$Pr(x_{t t}^{(i)} = x_{t t-1}^{(j)}) = w_t^{(j)}$	same as PF
	$\omega_t^{(i)} = \tilde{\omega}_t - \beta_t^{(i)} - \eta^{(i)}$	$\omega_t^{(i)} = \tilde{\omega}_t - \beta_t^{(i)} - \upsilon^{(i)}$
Propagation	$q_{t+1}^{(i)} = q_t^{(i)} + \frac{\Delta t}{2} \Xi(q_t^{(i)}) \omega_t^{(i)}$	$q_{t+1}^{(i)} = q_t^{(i)} + \frac{\Delta t}{2} \Xi(q_t^{(i)}) \omega_t^{(i)}$
Topagation	$\beta_{t+1}^{(i)} = \beta_t^{(i)} + \Delta t \zeta^{(i)}$	$\beta_{t+1}^{(i)} = \beta_t^{(i)} + K_{\infty} v^{(i)}$
	$\eta^{(i)} \sim \mathcal{N}(0_{3 \times 1}, \bar{Q}_2), \zeta^{(i)} \sim \mathcal{N}(0_{3 \times 1}, \bar{Q}_1)$	$v^{(i)} \sim \mathcal{N}(0_{3 \times 1}, P_{\infty} + \bar{Q}_1)$

		Results and Conclusion

Simulation Results

		Results and Conclusion

Simulation Results

		Results and Conclusion

Conclusion

- The attitude estimation equations can fit in the MPF framework
- We showed that there exists a steady state PF that can offer additional advantages in relieving computational burden
- We were able to show that MPF can offer improvements over the PF and EKF in estimating, especially for large initial error covariance, the attitude

		Results and Conclusion

Conclusion

Thank you for your time!

King Abdulaziz City for Science and Technology is the sponsor for this work

