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Introduction

• Attitude estimation is finding the best guess to a spacecraft’s
orientation

• Particle Filters recently gained traction as a feasible estimation tool
because of advances in computational power

• It also doesn’t make any assumptions at all about the states’ belief, in
contrast to EKF and UKF, which have been traditionally used
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Particle Filter: Big Idea

• Based on Bayes rule, particle filter is a Monte Carlo method to arrive
at a best estimate for the state of a system

P (xt|Yt) = ηP (yt|xt)P (xt|Yt−1) (1)
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Initialize

Some unknown, nonlinear state distribution
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Initialize

x
(i)

0|−1 ∼ P (x0), ∀i = 1, . . . , N
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Propagate

x
(i)

t+1|t ∼ P (xt+1|x(i)

t|t , ut)
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Update

w
(i)
t ∝ P (yt|x(i)

t|t−1)w
(i)
t−1 and

∑N
i=1 w

(i)
t = 1
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Average

x̂t|t =
∑N

i=1 w
(i)
t x

(i)

t|t−1
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Resample

Pr(x
(i)

t|t = x
(j)

t|t−1) = w
(j)
t
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Resample

Reweight w
(i)
t = 1/N and then repeat
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Marginalized PF: Big Idea

• MPF is a natural extension of PF and takes advantage of the linear
substructure hidden in the filter dynamics by marginalizing them and
estimating them with a Kalman filter.

xt =

[
xnt
xlt

]
=

[
qt
βt

]
(2)
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MPF Formulation

• It turns out that the dynamics attitude estimation can fit in the MPF
framework!

xnt+1 = fn
t (xnt ) +An

t (xnt )xlt +Gn
t (xnt )wn

t

xlt+1 = f l
t(x

n
t ) +Al

t(x
n
t )xlt +Gl

t(x
n
t )wl

t

yt = ht(x
n
t ) + Ct(x

n
t )xlt + et

(3)

qt+1 = qt +
∆t

2
Ξ(qt)ω̃t −

∆t

2
Ξ(qt)βt −

∆t

2
Ξ(qt)ζt

βt+1 = βt + ∆t · ηt
yi = A(q)ri + νi

(4)

[14] Schon, T., Gustafsson, F., and Nordlund, P.-J., 2005. Marginalized particle filters for mixed
linear/nonlinear state-space models. Signal Processing, IEEE Transactions on, 53(7), pp. 22792289.
[5] Crassidis, J. L., and Junkins, J. L., 2011. Optimal estimation of dynamic systems. CRC press.
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MPF Formulation

• We can match terms and find that:

fn
t = qt +

∆t

2
Ξ(qt)ω̃

An
t = Gn

t = −∆t

2
Ξ(qt)

Al
t = Gl

t/∆t = I3×3

ht =


A(qt)r1

A(qt)r2

...
A(qt)rM


Ct = 03M×3 f l

t = 03×1

(5)
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SS MPF Formulation

• We can now run the PF on the nonlinear states and the KF on the
linear states to get our state estimates

• If each linear particle is subject to the same initial covariance
conditions, then the N linear particles can be propagated by one set of
KF equations.

• Implication: We would reduce our problem size because each linear
particle can be initialized with the same Ricatti equation
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SS MPF Formulation

• If the right conditions exists, Kalman theory dictates that there exists
a steady state covariance P∞, and subsequently, a steady state Kalman
gain, K∞

P∞ = P∞ + ∆t2Q̄2 − P∞(P∞ + Q̄1)−1P∞

K∞ = P∞(P∞ + Q̄1)−1
(6)

• Implication: No more propagating each particle’s covariance through
the MPF and you can solve for the gains offline
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PF vs SS MPF

PF Steady-state MPF

Initialization

Initialize particles Initialize quaternion particles q
(i)
0

q
(i)
0 , β

(i)
0 β

(i)
0 = β̄0

Solve the Riccati equation for P∞

Update w
(i)
t ∝ P (yt|x(i)

t|t−1)w
(i)
t−1 and

∑N
i=1 w

(i)
t = 1 same as PF

Estimate x̂t|t =
∑N

i=1 w
(i)
t x

(i)

t|t−1 same as PF

Resampling Pr(x
(i)

t|t = x
(j)

t|t−1) = w
(j)
t same as PF

Propagation

ω
(i)
t = ω̃t − β(i)

t − η(i) ω
(i)
t = ω̃t − β(i)

t − υ(i)

q
(i)
t+1 = q

(i)
t + ∆t

2
Ξ(q

(i)
t )ω

(i)
t q

(i)
t+1 = q

(i)
t + ∆t

2
Ξ(q

(i)
t )ω

(i)
t

β
(i)
t+1 = β

(i)
t + ∆tζ(i) β

(i)
t+1 = β

(i)
t +K∞υ

(i)

η(i) ∼ N (03×1, Q̄2), ζ(i) ∼ N (03×1, Q̄1) υ(i) ∼ N (03×1, P∞ + Q̄1)
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Simulation Results
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Simulation Results
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Conclusion

• The attitude estimation equations can fit in the MPF framework

• We showed that there exists a steady state PF that can offer additional
advantages in relieving computational burden

• We were able to show that MPF can offer improvements over the PF
and EKF in estimating, especially for large initial error covariance, the
attitude
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Conclusion

Thank you for your time!

King Abdulaziz City for Science and Technology is the sponsor for this work
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