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Introduction

Developed in the 1860s, Newton’s Theory of Gravitation provided an easy explanation for
many of the phenomenon observed in planetary motion. Grounded in the fact that gravity is
a force of attraction between two massive objects, Newtonian gravity is not perfect and fails
to account for anomalies found from observations in the orbits of planets like Mercury. In
the 1900s, Einstein’s general theory of relativity provided a geometric basis for gravitation as
well as a satisfying explanation for the anomalies that Newtonian gravity could not address.

In this project, differences and similarities of orbits formed between the Earth and Sun
is explored in both the non-relativistic Newtonian case and the relativistic general relativity
case. Finally, Mercury’s orbit in space will also be investigated with respect to both models
of gravitation.

Situation

In the analysis to follow, this paper considers the motion of a body of mass m around a
non-moving object of mass M . The coordinates of the mass m are parametrized by a set of
spherical polar coordinates, R, φ, and θ.

In the non-relativistic case (Newtonian case), the motion of mass m is under the influ-
ence of the conservative gravitational potential field. In the relativistic case (Einstein case),
the motion of mass m obeys space-time’s geodesics with respect to the Schwarzschild metric:

ds2s = c2
(

1− 2MG

Rc2

)
(dt)2 −

(
1− 2MG

Rc2

)−1

(dR)2 −R2((dφ)2 + sin2(φ)(dθ)2) (1)
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Earth - Sun orbit

In the following section, the paper will use the Earth-Sun system as an example to demon-
strate similarities and differences between the two gravitation model. In the context of this
paper, Msun = 1.99× 1030kg, G = 6.67× 10−11m3kg−1s−2, and c = 3.00× 108m/s. G is the
universal gravitational constant and c is the speed of light.

Non-relativistic Orbits

To generate phase portraits for the non-relativistic case, the Lagrangian for the system must
be expressed:

L =
m

2
(Ṙ2 + (Rφ̇)2 +R2sin2(φ)θ̇2) +

GMm

R
(2)

From the Lagrangian, a set of three equations of motion are obtained. For the scope of this
paper, of particular interest are the ones concerning R and θ:

d2R

dt2
= R

(
dφ

dt

)2

+Rsin2(φ)

(
dθ

dt

)2

− GM

R2
(3)

R2sin2(φ)
dθ

dt
= pθ (4)

The integral of motion can be used in conjunction with the chain rule to rewrite our differ-
ential equation such that we have an expression of R(θ) instead of R(t). The relationship
between the two is as shown:

dR

dt
=

dR

dθ

dθ

dt

=
dR

dθ

pθ
R2

(5)

d2R

dt2
=

d2R

dθ2

(
dθ

dt

)2

+
dR

dθ

d2θ

dt2

=
d2R

dθ2
p2θ
R4
− 2

pθ
R3

dR

dθ
(6)

From the homework, it was determined that φ and φ̇ are equal to π
2

and 0, respectively.
Combining that fact with the results above, the differential equations collapse to:

d2R

dθ2
= R +

2

R

(
dR

dθ

)2

− GMR2

p2θ
(7)

For large values of R (i.e. as we go farther away from the mass M), the difference between the
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non-relativistic case and relativistic case diminishes. As a result, the coordinate transform
R = 1

u
is used to provide an alternative form to (??):

d2u

dθ2
=
MG

p2θ
− u (8)

Using the non-dimensionalized parameter u = GM
p2
θ
x, the equation simplifies further to:

d2x

dθ2
= 1− x (9)

The phase portrait for this differential equation is shown in Fig. ??:

Discussion

After applying a coordinate transformation, the behavior of the Earth-Sun system under the
Newtonian case is brought into full view. As seen from the phase portrait, Fig. ??, the four
types of orbit behavior - circular, elliptical, parabolic, and hyperbolic - are stable (i.e. form
closed orbits). According to [?], the circular orbit is signified by the center red dot and the
ellipses adjacent to it, counting from inside to outside, represent elliptical, parabolic and
hyperbolic orbits. Therefore, under the non-relativistic case there is no limit to the distance
between the Earth and Sun because all of the orbits are stable.

x ’ = y    
y ’ = 1 − x
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(a) Figure for non-relativistic orbits. Observe that
orbits are closed and stable for all values of x

x ’ = y                                                        

y ’ = (x − 1) x + x (y
2
) (2 − (2 − 1.5 x)/(1 − x)) + A/(1 − x)

A = 1.95e − 8
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(b) Figure for relativistic orbits. Observe that or-
bits beyond x = 1(i.e when Rs = R) is senseless
because those orbits lie within the event horizon

Figure 1: Phase portraits for both the non-relativistic and relativistic case for the Sun-Earth
system. The x axis is x whereas the y axis is dx

dθ
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Relativistic Orbits

Since relativistic orbits are based on the geodesics of space-time, the Schwarzschild line
metric, Eq. (1), is used to derive the equations of motion. After setting the initial conditions
φ = π

2
and φ̇ = 0 and performing some algebra, the equations of relevance are:

R̈ =

(
1− Rs

R

)
p2θ
R3

+

(
1− Rs

R

)−1
Rs

2R2

(
Ṙ2 − p2t

c2

)
(10)

pt = c2
(

1− Rs

R

)
ṫ

pθ = R2θ̇ (11)

where Rs = 2MG
c2

is the Schwarzschild radius, which is the critical radius that an object of
mass M must exceed in order to not become a black hole. Similar to above, R must be a
function of θ so the chain rule and the pθ relation is invoked again to arrive at this expression:

d2R

dθ2
=

(
1− Rs

R

)
R +

1

R

(
4 R
Rs
− 3

2 R
Rs
− 2

)(
dR

dθ

)2

−
(

1− Rs

R

)−1
Rsp

2
tR

2

c2p2θ
(12)

Applying the coordinate transform, R = 1
u

and then non-dimensionalizing it with the pa-
rameter u = x

Rs
, the equation transforms to:

d2u

dθ2
= (Rsu− 1)u+

1

u

(
du

dθ

)2(
2− 2− 1.5Rsu

1−Rsu

)
+

Rsp
2
t

2(1−Rsu)p2θc
2

(13)

d2x

dθ2
= x(x− 1) + x

(
dx

dθ

)2(
2− 2− 1.5x

1− x

)
+

1

2(1− x)

(
ptRs

pθc

)2

(14)

The phase portrait associated with this differential equation is shown in Fig. ??. The
parameter A = (ptRs

pθc
)2 = 1.95×10−8 was previously calculated in homework and represents

a constant specific to the planet of interest.

Discussion

The phase portrait for relativistic orbit is dramatically different from that of the non-
relativistic case. The phase portrait can be split into two halves along the vertical at x = 1.
The left half represents viable orbits for the Earth-Sun system and varying orbit types, such
as the circular, elliptical, parabolic and hyperbolic variety The circular orbit is the equi-
librium point found at (0,0) (or in other words, at R = ∞). As the orbits move radially
outward, the orbits become more hyperbolic. The right half, however, represents values of
x > 1 (when R ≤ Rs). In other words, mass m passed the event horizon of the black hole
and is now stuck. As an aside, although calculations were done based on the Earth-Sun
system, the orbits depicted in Fig. ?? are unobtainable in the physical world because this
analysis ignores the geometries of the celestial bodies (i.e. Rs << Rsun).
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Mercury’s orbit

Now the focus will be placed on Mercury and its orbit as predicted by the non-relativistic
and relativistic model. For the scope of this paper, MMercury = 3.3× 1023kg and its orbital
period is 87.96 days.

Non-relativistic Orbit

From Eq.(??), the non-relativistic motions of Mercury can be determined and reconstructed.
The following dimensionless parameters are used

τ =
G2M2

Mercury

p3θ
t and R =

p2θ
GM

x (15)

to arrive at the following set of non-relativistic, nondimensionalized equations of motions for
Mercury.

d2x

dτ 2
=

1

x3
− 1

x2
(16)

dθ

dτ
=

1

x2
(17)

−4 −3 −2 −1 0 1 2

−1

0

1

2

3

4

x = GMR/p 2
θ

y
=

G
M

R
/
p
2 θ

Orbit of Mercury with varying initial conditions

 

 

Orbit I

Orbit II

Orbit III

Orbit IV

Orbit V

Figure 2: All of the possible orbits suggested by the phase portrait Fig.(??), superimposed
upon one another in space. The Roman numbering is related to which orbit was chosen (see
Fig. (??)) The origin is located at (0,0)

.
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Relativistic Orbit

To examine the Mercury’s physical orbits in the Einstein case, we start with Eq.( ??) and
choose the following to be the appropriate dimensionless parameters

τ = t
pθ
R2

and x =
R

Rs

(18)

and after some algebra, the following set of differential equations describe the relativistic
motion of Mercury.

d2x

dτ 2
= (x− 1) +

1

2x(x− 1)

(
dx

dτ

)2

+
Ax3

(x− 1)
(19)

dθ

dτ
= 1 (20)

where A =
p2tR

2
s

2p2
θ
c2

= 5.15× 10−8 for Mercury.
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7 Relativistic Orbit of Mercury with r
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Figure 3: Mercury’s physical orbit numerically integrated by ODE45 for a long time interval.
Unique to the relativistic model, the precession observed here is also physically present in
Mercury’s orbit
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Discussion

Comparing the phase portrait between the non-relativistic and relativistic case, it’s easy to
observe that there are distinctive from one another. Most noticeably, the relativistic phase
portrait has extremely distorted orbits near x = 1 to reflect the event horizon found accom-
panying black holes. Taking the aforementioned differential equations, ODE45 was used to
recreate the physical orbits of Mercury under the non-relativistic and relativistic model. In
the non-relativistic case, the orbits found are beautiful. As the initial conditions vary, the
body’s orbit will evolve from a perfectly circular orbit to an ellipse to a parabolic orbit and
then finally to a hyperbolic orbit. This is clearly demonstrated in Fig.(??) and Fig.(??)

The orbits recreated from the relativistic phase portrait are just as interesting. The ad-
ditional A term in the equation hints that the relativistic equations are system-specific. A
prime example of this is that the circular orbit equilibrium point is located a great distance
away from the origin to reflect the actual average distance between the Sun and Mercury.
Another interesting thing to observe is that, unique to the relativistic model, is precession in
Mercury’s orbit. This is most prominently featured in Fig.(??) where the first and seventh
revolution of Mercury is highlighted in green and magenta, respectively, to demonstrate this
phenomenon. Finally, the relativistic model also indicates presence of black holes and as
shown in Fig.(??), orbits that collides with the event horizon will cause nonsensical, non-
plottable data to be calculated.
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Figure 4: Phase portrait with several chosen trajectories alongside its physical orbits in space
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(a) Phase portrait generated by Eq.(??). Going
radially outward, the chosen orbits are: I) the
equilibrium point (1,0); II) the orbit at (.5,0); III)
the orbit at (1.5,0); IV) the orbit at (2,0); and V)
the orbit at (.25,0) The x axis is the nondimen-
sionalized parameter x and the y axis is dx

dτ .
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(b) I Circular orbit

−6 −5 −4 −3 −2 −1 0

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Orbit of Mercury with r
0
 = 0.5, dr = 0, and theta = 0.0

x = GMR/p 2
θ

y
=

G
M

R
/
p
2 θ

(c) II Parabolic orbit
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(d) III Elliptical orbit
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(e) IV More eccentric elliptical orbit
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(f) V Hyperbolic orbit
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Figure 5: The origin for these plots are at (0,0). Caution: Pay attention to axes range before
examining plots. The x axis of the plots are for the nondimensionalized parameter x = R

Rs

and the y axis is dx
dτ

.
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(a) Close view of relativistic phase portrait

x ’ = y                                          

y ’ = (x − 1) + y
2
/(2 x (x − 1)) − A x

3
/(x − 1)

A  = 5.15e − 8
 

 
 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
7

−4

−3

−2

−1

0

1

2

3

4

x 10
7

x

y

(b) Far view of relativistic phase portrait
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(c) As predicted, if we start at the event horizon
(i.e. when x = R

Rs
= 1), the body wouldn’t move.

Therefore no orbit is generated. The black circle
represents the event horizon.
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(d) Plot of the other equilibrium at x = 1.94×107,
which is the same as the average distance between
the Mercury and Sun. This equilibrium generates
a circular orbit
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(e) This physical orbit is an example of when the
initial conditions are detrimental. Mercury is sent
on a collision course towards the origin where it
would collide with the Sun.
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